Govt. P. G. College Ambala Cantt.

Lesson Plan 2019-20 (Even Semester)

Name of Assistant Professor: Dr. Raj Kumari

Department : Physics

Class: B.Sc. 2nd Semester Non-Med (1-3) Days

Subject: Semi-Conductor Devices (PH-202)

Week	Торіс
3.	Unit I : Semiconductors Energy bands in solids, Intrinsic and extrinsic semiconductors
4.	carrier mobility and electrical resistivity of semi-Conductor, Hall effect
5.	p-n junction diode and their characteristics Zener and Avalanche breakdown, Zener diode, Zener diode as a voltage regulator
6.	 p-n junction as a rectifier, half wave and full wave rectifiers (with derivation) filters (series inductor, shunt capacitance, L-section or choke, π and R.C. filter circuits Doubts/Querries
7.	Test I/ Assignment I Unit: II Transistors: Junction transistors Working of NPN and PNP transistors
8.	Three configurations of transistor (C-B, C-E, C-C modes) Common base, common emitter characteristics of transistor common collector characteristics of transistor
9.	Constants of a transistor and their relation Advantages and disadvantages of C-E configuration D.C. load line
10.	Mid Semester Vacations
11.	Transistor biasing, various methods of transistor biasing and stabilization Doubts/Querries Test II/ Assignment II Unit III: Transistor Amplifiers: Amplifiers, Classification of amplifiers,
12.	common base and common emitter amplifiers coupling of amplifiers

13.	various methods of coupling Resistance- Capacitance (RC) coupled amplifier (two stage, concept of band width, no derivation) Doubts/Querries
14.	Unit IV : Oscillators: Principle of oscillation, classification of oscillators, classification of oscillators,cont
15.	Condition for self sustained oscillation: Barkhausen criterion for oscillation,
16.	Tuned collector common emitter oscillator, Hartley oscillator, C.R.O. (Principle and Working).
17.	Doubts/Querries Test IV/ Assignment IV

Govt. P. G. College Ambala Cantt.

Lesson Plan 2019-20 (Even Semester)

Name of Assistant Professor: Dr. Raj Kumari

Department : Physics

Class: B.Sc. 6th Semester Non-Med (1-3) Days

Subject: Atomic and Molecular Spectroscopy (PH-602)

Week	Торіс
3.	Unit - I: Historical background of atomic spectroscopy Introduction of early
	observations,
	emission and absorption spectra atomic spectra, wave number
4.	spectrum of Hydrogen atom in Balmer series
	Bohr atomic model (Bohr's postulates)
	spectra of Hydrogen atom, explanation of spectral series in Hydrogen atom
5.	un-quantized states and continuous spectra
	spectral series in absorption spectra, effect of nuclear motion on line spectra
	(correction of finite nuclear mass)
6.	variation in Rydberg constant due to finite mass, short comings of Bohr's theory
	Wilson sommerfeld quantization rule, de-Broglie interpretation of Bohr
	quantization law
	Bohr's corresponding principle, Sommerfeld's extension of Bohr's model
7.	Sommerfeld relativistic correction, Short comings of Bohr-Sommerfeld theory
	Vector atom model; space quantization, electron spin, coupling of orbital and spin
	angular momentum, spectroscopic terms and their notation
	quantum numbers associated with vector atom model, transition probability and selection rules
	selection rules
8.	Doubts/Querries
	Test I/ Assignment I Unit –II: Vector Atom Model (single valance electron)
	Orbital magnetic dipole moment (Bohr megnaton)
_	behavior of magnetic dipole in external magnetic filed; Larmors' precession and
9.	theorem Penetrating and Non-penetrating orbits, Penetrating orbits on the classical model
	Quantum defect, spin orbit interaction energy of the single valance electron, spin
	orbit interaction for penetrating and non-penetrating orbit

10.	Mid-Semester Vacations
11.	Doubts/Querries quantum mechanical relativity correction Hydrogen fine spectra, Main features of Alkali Spectra
12.	Rydeburg-Ritze combination principle, Absorption spectra of Alkali atoms observed doublet fine structure in the spectra of alkali metals and its Interpretation
13.	Intensity rules for doublets, comparison of Alkali spectra and Hydrogen spectrum Test II/ Assignment II
14.	UNIT-III: Vector Atom model (two valance electrons) Essential features of spectra of Alkaline-earth elements Vector model for two valance electron atom: application of spectra Coupling Schemes;LS or Russell – Saunders Coupling Scheme and JJ coupling scheme Test III/ Assignment III
15.	Two valance electron system-spectral terms of non-equivalent and equivalent electrons, comparison of spectral terms in L-S And J-J coupling Hyperfine structure of spectral lines and its origin; isotope effect, nuclear spin Doubts/Querries
16.	Unit –IV: Atom in External Field Zeeman Effect (normal and Anomalous), Experimental set-up for studying Zeeman effect, Explanation of normal Zeeman effect (classical and quantum mechanical)
17.	Paschen-Back effect of a single valence electron system. Weak field Stark effect of Hydrogen atom, Raman Spectra Doubts/Querries Test IV/ Assignment IV

Govt. P. G. College Ambala Cantt.

Lesson Plan 2019-20 (Even Semester)

Name of Assistant Professor: Dr. Raj Kumari

Department : Physics

Class: B.Sc. 6th Semester Computer Science (4-6) Days

Subject: Atomic and Molecular Spectroscopy (PH-602)

Week	Торіс
3.	Unit – I: Historical background of atomic spectroscopy Introduction of early
	observations,
	emission and absorption spectra
	atomic spectra, wave number
4.	spectrum of Hydrogen atom in Balmer series
	Bohr atomic model (Bohr's postulates)
_	spectra of Hydrogen atom, explanation of spectral series in Hydrogen atom
5.	un-quantized states and continuous spectra
	spectral series in absorption spectra, effect of nuclear motion on line spectra
	(correction of finite nuclear mass)
6.	variation in Rydberg constant due to finite mass, short comings of Bohr's theory
	Wilson Sommerfeld quantization rule, de-Broglie interpretation of Bohr
	quantization law
	Bohr's corresponding principle, Sommerfeld's extension of Bohr's model
7.	Sommerfeld relativistic correction, Short comings of Bohr-Sommerfeld theory
	Vector atom model; space quantization, electron spin, coupling of orbital and spin
	angular momentum, spectroscopic terms and their notation
	quantum numbers associated with vector atom model, transition probability and selection rules
	selection rules
8.	Doubts/Querries
	Test I/ Assignment I
	Unit –II: Vector Atom Model (single valance electron)
	Orbital magnetic dipole moment (Bohr megnaton)

	behavior of magnetic dipole in external magnetic filed; Larmors' precession and
9.	theorem
	Penetrating and Non-penetrating orbits, Penetrating orbits on the classical model
	Quantum defect, spin orbit interaction energy of the single valance electron, spin
	orbit interaction for penetrating and non-penetrating orbit
10.	Doubts/Querries
	quantum mechanical relativity correction
	Hydrogen fine spectra, Main features of Alkali Spectra
11.	Mid-Semester Vacations
12.	Rydeburg-Ritze combination principle, Absorption spectra of Alkali atoms
	observed doublet fine structure in the spectra of alkali metals and its Interpretation
13.	Intensity rules for doublets, comparison of Alkali spectra and Hydrogen spectrum
	Test II/ Assignment II
14.	UNIT-III: Vector Atom model (two valance electrons)
	Essential features of spectra of Alkaline-earth elements
	Vector model for two valance electron atom: application of spectra
	Coupling Schemes;LS or Russell – Saunders Coupling
	Scheme and JJ coupling scheme
	Test III/ Assignment III
15.	Two valance electron system-spectral terms of non-equivalent and equivalent
	electrons, comparison of spectral terms in L-S And J-J coupling
	Hyperfine structure of spectral lines and its origin; isotope effect, nuclear spin
	Doubts/Querries
16.	Unit –IV: Atom in External Field
	Zeeman Effect (normal and Anomalous),
	Experimental set-up for studying Zeeman effect, Explanation of normal Zeeman
	effect (classical and quantum mechanical)
	Paschen-Back effect of a single valence electron system. Weak field Stark effect of
17.	Hydrogen atom, Raman Spectra
	Doubts/Querries
	Test IV/ Assignment IV